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Perturbation methods in boundary-layer theory 
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To solve a mathematical problem involving a small parameter, it is customary 
to expand the solution in powers of that parameter. In  singular cases the resultant 
linearized problem may be insoluble, and in some such cases it is appropriate 
to expand the solution in powers of the square-root of the small parameter. These 
cases are associated with bifurcation of the solution. The method is illustrated 
by applying it to the Falkner-Skan equation and to a problem in hydrodynamic 
instability. In particular, Hartree’s conjecture, that near separation the skin 
friction vanes like the square-root of the appropriate parameter of the Falkner- 
Skan equation, is substantiated. 

1. Introduction 
The literature of boundary-layer theory recounts many occasions where 

problems are linearized as part of some perturbation procedure. Here we shall 
treat a special case of such a perturbation procedure in which a na’ive expansion 
of the solution in powers of the natural small parameter is invalid, although 
linearization of the boundary-layer problem about a particular solution is 
desirable and the correct expansion of the solution is in powers of the square-root 
of the small parameter. The ideas stem from the rigorous background of the 
Liapounov-Schmidt theory of bifurcation and its developments such as Leray- 
Schauder theory (cf. Stakgold 1971). The method is useful in applied mathematics 
at large, and is worthy of more use. Some applications to fluid mechanics are 
suggested by examples in the following sections. It seems easiest to explain the 
basic idea by considering a simple classic example, that of the Falkner-Skan 
equation. 

2. Perturbation of solutions of the Falkner-Skan equation 
The Falkner-Skan equation 

f” +#” + p( 1 -f’2) = 0, (1) 

f(0) = f ’ ( O )  = 0, f’(co) = 1 (2) 

and its boundary conditions 

are well known (cf. Rosenhead 1963, chap. 5) to have solutionsf(7) for 0 < t j  < 00, 

/3* < /3 < 2. Here it should be understood that the condition at infinity means 
that 1 -f’(q) becomes exponentially small as tj  + co, and that /3* is the value of /3 
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for whichf”(0) = 0, viz. /3* = - 0.19883774. It is known that there is one solution 
satisfying 0 c f’(r)  < 1 and f”(7) > 0 for 0 < 7 < 00 for each value of /3 in the 
range /3* < p < 2, but that there is a second solution satisfying f’(7) < 1 for 
0 < 7 < 00 and f ‘(7) < 0 for fairly small 7 when /3 lies in the range /3* < /3 < 0. 
The latter solution represents a boundary layer with a region of reversed flow 
near the wall 7 = 0. 

Following Rubbert & Landahl (1967), we start by supposing that we know 
f(7) = fo(7) for p = Is,, where Po is any given number such that pyc < Po < 2, and 
seekf(7) for neighbouring values ofp. Herefo(r) may be either of the two solutions, 
with or without reversed flow. Then it is natural to try to expand 
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f (7 )  =fo( r )+(P-po) f~(7 )+(p -Po)2 f2 ( r )+  * . f  ( 3) 

for small values of /3-p0. On equating coefficients of powers of the small para- 
meter /3 - Po in the Palkner-Skan problem this formally gives us a succession of 
linear inhomogeneous problems to solve: 

Lf2 = Pof;2-flf;-k2f;fi, Bfi = 0 ;  (P2) 

etc. Thus we suppose that the solutionf,(q) of the nonlinear problem (1)  and (2) 
with ,4 = Po is known completely, and seek to solve the linear problems (P’), 

Well-known properties of ordinary differential equations (of. Friedman 1956, 
chap. 3) imply the Fredholm alternatives for problems (P,) (n  = 1,2,  ...) that 
either 

@2), etc- 

(i) the homogeneous problem H ,  namely 

(HI Lh = 0, Bh = 0, 

has no non-trivial solution and (P,) has a unique solution; or 
(ii) ( H )  has a non-trivial solution h, the adjoint homogeneous problem ( H t )  

has a non-trivial solution h+, and either (a) (P,) has an infinity of solutions, if its 
right-hand side is orthogonal to h+, or (b)  (P,) has no solution, if its right-hand side 
is not orthogonal to ht. 

Chen & Libby (1968) have shown that the problem ( H )  has no non-trivial 
solution h when /3* < Po 6 2. Therefore, under alternative (i), it  is possible to 
solve problem PI by the method of variation of parameters. This holds in principle, 
though in practice we do not know three independent solutions of the equation 
Lg = 0 in terms of elementary functions, and so have to resort to numerical 
methods to find fi. In  the same way we can solve (P2), (P3), etc. and proceed with 
a formal solution to as high a degree of approximation as we wish. 

A special case arises when Po = /3*. Then it is well known that a solution to ( H )  
is simply 

h = f ; ( r ) ,  (4) 
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because Lf; = 0 (for all Po incidentally) and Bf; = 0 because fl(0) = 0 when 
Po = /3*. Therefore a non-trivial solution h of the homogeneous problem exists 
in this special case, and alternative (ii) applies. 

It is now necessary to digress by solving the adjoint problem, 

Ltht = 0, Btht = 0. (Ht 1 
Here we must find Lt and Bt explicitly so that the adjoint relation 

holds for all well-behaved functions g and gt satisfying the boundary conditions 
3 9  = 0 and Btgt = 0. Now integration by parts gives 

/omg'L9d7/ = jrn9Ligtd?l+ 0 [gtg"- (qt'-fogt)g'+ (9t"-fo9t'-(1+28*)fist)slo", 
(6) 

(7)  

where the differential operator Lt is defined so that 

Ltgt = - gt"' +fog+" + 2( 1 +P*) (fig')'. 

It follows that we must define the operator Bt so that 

(8) 

Here A denotes any exponentially decreasing function of q, the second boundary 
condition meaning that gt' - fogt does not increase exponentially at  infinity. The 
solution h = f; of Lh = 0 gives an integration factor of L+ht; in fact 

1- st(0) 

[(St' -fog') A l p m  
[gt"-f0gt'- (1  + 2P*)f;9'IT=m 

Btg+ e 

f iLtht = d[-f;ht"+ (fofi+f:)h+'+{p*+ (1 +P*)f;'}h']/dy. 

-f;htn + (fof; +$) ht' + {p* + (1 +P*)fA2) ht = 0, 

(9) 

(10) 

on use of the conditions Btht = 0 a t  infinity and of the properties that f;(m) = 1 
and fl(00) = 0. We have integrated system (at) numerically to find ht when 
Po = p*. With the normalization that h+'(O) = 1, we find that ht(q) > 0 for 

After this digression on the adjoint problem, we return to problem (Pl), when 

Therefore 

o < q < c o .  

Po = P*. Equations (Pl), (5) and (at) give 

= JOm ht( 1 -jA2) dq = I1, say, 

on the assumption that fl exists. But we already know that ht(q) > 0 and 
0 < f ; ( q )  < 1 for 0 < y < m. Therefore Il cannot vanish, and fl does not exist 
when Po = /3*. 
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The whole perturbation expansion (3) is seen to break down in this special 
case Po = P* for which non-trivial solutions h and ht exist. The cure for the trouble 
is simply to expandf(r) in the form 

and equate coefficients of powers of (/?-p*)* in the Falkner-Skan problem (1) 
and (2). This time we find that 

f ( r )  = f o b )  + (P- P*)”&r) + (P - P*)f1(r) + * * (12) 

Lfs = 0, Bfh = 0; ( Q g )  

Lf1= P*f~-f+f;-(1-f;”> Bf1= 0; (Qi) 

f+ = af & (13) 

etc. The solution of problem (Q*) is simply 

where a is an arbitrary constant, because (Q9) is the same problem as ( H ) .  We 
shall determine the constant a by requiring that the problem (Q1) be soluble. 
Now (Q1) gives 

Therefore the adjoint relation for (Q1) becomes 
Lf1 = az(p* $2- f 6 f:) - ( 1  -f62). (14) 

o = j m f l ~ t h t  dy = 

I ,  5 ht(p*f;2-f;f/) d r  

h + ~ f ,  dy = a212 - 
0 s,” 

!OM 

= SO“ ht{P*f,”2+fOfl)fO++*(1 -f;”f@% (15) 

where 

and II is given in ( 1  1). Therefore 

provided that I, =t= 0.  (If I, were zero, we would next try to expand the solution 
in powers of (P-P*)*.) With this proviso, we have a formal solution fl from 
which we may proceed to findf, etc. by similar methods. This gives two solutions, 

a s p  -+ p* + 0. 
This analytic result gives the qualitative behaviour of the graph of f ” ( 0 )  

against p for values of 1 near +* as found by numerical work of Hartree (cf. 
Rosenhead 1963, chap. 5). In particular, it gives two branches of the graph near 
p = p*, reversed flow corresponding to points on the lower branch with the 
negative square-root. (If 11/1, happened to be negative, then a would be pure 
imaginary and it would be more appropriate to write f = f o  f { - (P* -/3) Il/12)*fi 
for 0 < ,8* - 1 < 1.) Our analytic results seem to be new, though they only sub- 
stantiate and go a little beyond some conjectures Hartree made on the basis 
of his numerical work. 

We computed h+ with the normalization h+(O) = 1 and then integrated to find 
Il = 1.7936 and I, = 0.099419. This gives 

(We used the ‘shooting’ method to find ht. No difficulty was encountered in the 
numerical work. In particular, although ht N constant x r-(l+,B*) as 7 -f co, no 

a = L- (Il/&)+, ( 16) 

f(r) =fo(? l )  f { ( P - P * ) ~ 1 / I , } m ? )  +O(P-P*), (17) 

I J I .  = 18.04. (18) 
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long range of integration was necessary because (a) the integrands of Il and I.. 
decay exponentially, and (b )  ht was insensitive to precise imposition of the 
asymptotic boundary condition.) We verified the results (17) and (18) by direct 
numerical integration of the two solutions of the Falkner-Skan problem (1) 
and (2) for /3 = - 0.19880 and - 0.19882. A parabolic fit of the graph of f”(0) 
against /3 through the pointf”(0) = 0, /3 = /3* and the two points corresponding 
to the values off”(0) a t  each neighbouring value of /3 agrees with our results (17) 
and (18). 

3. General application of method 
Looking back over the above example, we see that expansion in powers of 

/3-& is valid in general, but not in particular when Po = /3*. In other words, 
the parametric derivative 8f(q, /3)/a/3 of the solution of the Falkner-Skan problem 
exists, except when /3 = ,8*. Recognition of this trouble and knowledge of its cure 
supplements Rubbert & Landahl’s (1967) discussion of the wide use of para,- 
metric differentiation of nonlinear solutions in fluid mechanics. In  our example 
we have only used ideas that are common to applied mathematicians, but they 
deserve more use, as the examples of the following sections show. These examples 
involve ordinary differential equations of low order, though the basic idea may 
be used for ordinary differential equations of high order, for partial differential 
equations, for difference equations etc. We shall emphasize applications to 
boundary-layer theory, because it seems there are many new and useful ones. 

Chen &Libby (1968) considered the variation downstream of a steady boundary 
layer which was slightly different from the Falkner-Skan solution at a given 
station. They were led to inhomogeneous linear problems of the form of (P!), which 
they solved in general, but not when /3 = /I*. They also discovered the interesting 
result that the solutions corresponding to reversed flow are unstable but that 
other solutions are stable, i.e. in steady flow in the boundary layer with flow 
reversed a small irregularity grows downstream but in a unidirectional boundary 
layer a small irregularity decays. Thus /3 = /3* is a margin of stability between 
the stable ‘upper branch’ marked by unidirectional flow and the upper sign of a 
in (16), and the unstable ‘lower branch’ marked by reversed flow and the lower 
sign of a. One may conjecture that the bifurcation of the solution of the Falkner- 
Skan equation a t  /3 = /3* is related to the margin of stability found by Chen & 
Libby (1968). 

Kelly (1962) considered the development in time of small perturbations of 
the Falkner-Skan solution. This again leads to linearized equations similar to 
those of 8 2. Kelly found stability in this sense for /3 = 1 and /3 = $ but did not 
consider other values of /3. 

In  finding approximations to the solution of the Navier-Stokes equations 
higher than that of the Falkner-Skan solution, inhomogeneous linear problems 
recur (cf. Van Dyke 1964, $8  7.8, 7.11) and the linear analysis discussed in $ 2 is 
relevant. 

It is customary to regard the Falkner-Skan solution as a crude local approxi- 
mation to that of the boundary layer on a curved body and to allow /3 t o  vary 
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to simulate the development of the boundary layer downstream. Thus, if a bluff 
body is placed in a uniform stream, B = 1 at the forward stagnation point and ,8 
decreases around the body. The boundary layer separates where B decreases to 
/3*, so that the approach to stagnation is determined by the special rather than 
the general case of 9 2. (However, if separation occurs the reversed flow invalidates 
the derivation of the Falkner-Skan equation as an asymptotic approximation for 
the Navier-Stokes equations.) Narasimha & Ojha (1967) and Cooke (1966), in 
an unpublished report, have given a more refined theory, considering a wall with 
small curvature. Again, they found inhomogeneous linear problems of the same 
form as (P%) and solved them only for B > Bye. The solution for ,8 = /3* is found in 
$ 5 of this paper. 

These problems of perturbations of the Falkner-Skan equation have analogies 
throughout boundary-layer theory. Bifurcation of dual solutions is known to 
occur in many problems : boundary-layer flows of compressible fluid (cf. Stewart- 
son 1964, chap. 4); axisymmetric flow between two parallel rotating disks 
(Mellor, Chapple & Stokes 1968); free-convection flow at a saddle point (in un- 
published work following Banks 1972) ; magnetohydrodynamic boundary layers 
(Stewartson & Wilson 1964). Bifurcation may occur for free convection between 
vertical walls (Watson & Poots 197 1) .  We believe that the ideas of linear analysis 
used in $ 2  may be helpful in these other problems, although the details will 
differ. In  particular, the linearized differential system will usually be of order 
higher than three, and a solution of the homogeneous problem may be obtainable 
only by numerical analysis. Our finding a third-order equation for ( H )  and an 
explicit solution h = f A which also satisfied the boundary conditions when& = By; 
simplified, but was not essential to, the analysis of $2. Most boundary-layer 
equations do not explicitly depend upon 7, the scaled distance from the wall, and 
so it follows that the derivative of the solution will satisfy the homogeneous 
linearized equation; however, the Falkner-Skan problem is exceptional in that 
h = fi satisfies the homogeneous boundary conditions as well when Po = /3*. 

Dual solutions are also known for forced flow at a point of attachment (Schofield 
& Davey 1967), but bifurcation may or may not be related to the ideas of $2. We 
feel that the coincidence of linear marginal stability and bifurcation of non- 
linear solutions is important, as indeed was shown by Liapounov in his original 
study of the stability of rotating fluid masses. 

W .  H .  H.  B a n b  and P. G .  Drazin 

4. A three-dimensional boundary layer on a wedge with a weak cross- 
flow 

We shall now examine an example in detail to substantiate the discussion 
of the last section. Wilkinson (1954) considered a three-dimensional boundary 
layer near a rigid wall z = 0 having an outer flow with velocity xmi + ay j ,  after 
the manner of Howarth (1951). Wilkinson took a > 0 and assumed that the 
tangential velocity components within the layer could be expanded in the forms 
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as CL -+ 0 for fixed = 2m/(m+ i), where 7 3 [ (m + 1 ) / 2 ~ ] t x 8 ( m - ~ ) x  is the usual 
scaled distance from the wall. He then showed that fo is the usual solution of the 
Falkner-Skan problem (1) and (2); that 

I 
and that Llfl = fZ' +f& - 2fA f; + (3 - 2P)f;;fi 

= -(2-P)f;gl, 
Bf1 = 0. 

Explicit integration of the system (20) gives 

Wilkinson (1954, p. 76) foundf, numerically and noted that his solution broke 
down when j = /3* but did not proceed further with it. I n  the light of our previous 
work, we see at once that L, f h = 0 and Bf = 0 when = p+, so the nature of 
the trouble and its cure can be readily anticipated. 

Since a > 0 we expand u and v in the forms 

(22) 1 a = ."f h(q) + akd("+l) f&-) + mf;(q)  + O(& 

V =  aYg;(7) + O(a% 

as a -+ 0 + for 
layer equations. After a, little manipulation we find that 

= Pr, and equate coefficients of powers of a4 in the boundary- 

(24) 

(25) 

and that Ll f 1 = - (2 - P*)f;l g1 +f? - (2 - P*) fifi, 

f* = bfh 

Bfl = 0. 
By inspection we see that 

is the solution of problem (23) for an arbitrary constant b, whence (24) becomes 

To find b from the solubility condition of problem (26), we must consider the 
solution of the adjoint homogeneous problem 

Lihi = 0, Bift: = 0. (27) 

Now integration by parts gives 

jrn 0 StL19dq = jrn9L:gtd71+ 0 [gtg"- (gt'-fogt)g'+(gt''-f0gt'- 3fAgt)g],", (28) 

where List = -g"" + (fog+)" + 2(fhg+)' + (3 - 2/3*)f,"g+. (29) 
49 F L M  58 
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Therefore 
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9+(0) 

[W' - f o s + ) l ? p m  i [st" -fogt' - 3f ; s ~ I , = ~  
Big+ = 

By the metnoas ot 9 2 one may now show that 

Therefore we find that 

J2 = IOm {f:2 + (2 -P*)fo f f;+P*(Z - P*)f;( 1 - fh2),> hid7 = 0.099419. (34) 

These results give b = t ((2 -p*) J,/Jz)t = k 2.051. (35) 

Note that (22), (25) and (35) give two solutions for ,8 = Pyc. For < 1, 
equation (22) implies that the skin friction in the x direction has the same sign 
as b. Wilkinson took a > 0. This is unnecessary for ,h' > ,i3* but is necessary for 
P = /3*, because if a < 0 the expansion (22) is not real. These results can be clearly 
appreciated by considering the skin friction in a, p space: the double root for 
CI. > 0 and the complex double root for a < 0 are apparent. 

5. A two-dimensional boundary layer on a surface of small curvature 
We next find the effect of longitudinal surface curvature on the Falkner- 

Skan flow. Narasimha & Ojha (1967) and Cooke (1966) considered the perturba- 
tion of the Falkner-Skan solution due to small curvature of the wall. They 
assumed that the displacement surface is given such that the outer flow asymp- 
totically approaches the potential flow which has longitudinal velocity xmi, and 
then sought to iterate the solution to the Navier-Stokes equations at large 
Reynolds numbers by matching inner and outer solutions. This led to  the follow- 
ing problem (cf. Narasimha & Ojha 1967, equations (3.7)-(3.9), after correction 
of the misprinted sign of A in equation (3.7)). 

Lfl = kR1, (36) 

Bfi = f ) ,  (37) 

where B and L are as defined in (Pl), k is a constant proportional to the local 
curvature (which may be positive or negative), the function R, is given by 

2 
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the constant zero-order displacement thickness 

A = lim (7 - fo), 

and f,, is the solution of the Falkner-Skan equation for given B and k = 0. In  
fact the condition that f N - ky as y + 00 and equation (36) imply that 

7-m 

f ;= -kv+o( i )  as q-too. 

The method of solution of Narasimha & Qjha (1967) and of Cooke (1966) was 

(39) 

for small E ,  where E is the reciprocal of the square-root of the Reynolds number, 
with a similar expansion for the outer solution. Their numerical results indicate 
that the solution fl exists for /3* < /3 < 2 but not for ,d = p*. 

Our analysis confirms their conclusion as follows. A necessary condition for the 
existence of f, when /3 = /3* is that 

essentially to fix ,d and formally expand the inner solution 

f = fo + Ef1 +ey2 + . . . 

0 = Ic-llim [' flLtht dy 

= Kl, my7 

where 

It can be easily shown that R, = (2/3,  - I) 71 + A  + o( 1) and that 

ht = constant x (7 - A)-(1+2fl*) + O(y - A)-(3+2fl*) as q + + co, 
and thence that the integral converges. Although it converges algebraically 
rather than exponentially, the same numerical method as was used in § 2 gives 
K,= 1-103 with accuracy to four significant figures. Thus Kl + 0, condition (40) 
is violated and the solutionf, of system (36) and (37) does not exist whenp = /3*. 

To cure this trouble, we formally expand 

f =fO(~)+"~f~(4)+'fi(~)+ * " J  (42) 

Lf4 = 0, Bfh = 0, (43) 

and thence fi = c( - kPfh(7) (44) 

Lfl = kR1- C 2 W *  fP +fo fh f; + P* fh(1 - f A 2 ) 1 7  

and proceed much as we did in 0 2 .  This gives 

for some constant c to be determined. Therefore 

(45) 
49-2 
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and the adjoint relation gives 
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o = k-llim j ':f1~th'dq = ~,-c21,. 

Therefore c = '. (Kl/I,)* = f 3.330. (46) 

It can now be seen that, because K,, I, > 0, a real solution is possible only if 
k < 0; this is why we took the square-root of - k  rather than of k in (44). The 

f = fo + c( - k€)+fL + O(ks) solution (42) gives 
as E -+ 0. 

We note that for k > 0 (i.e. convex wall) there is no real solution but that for 
k < 0 (i.e. concave wall) there are two solutions corresponding to the alternative 
signs of c. There is an analogy between these results and those of Q 4: for cc > 0 
or k < 0 the basic Falkner-Skan flow is being accelerated and there are two 
solutions, while for a! < 0 or k > 0 the Palkner-Skan boundary layer is being 
further retarded so there is no solution, just as there is no solution to the Falkner- 
Skan problem for J3 c ,8*. 

This section indicates that a t  the onset of separation the correction to the 
profile is of the order of the inverse fourth-root of the Reynolds number rather 
than the usual inverse square-root of boundary-layer theory. 

B-+W 

(47) 

6. Instability of shear flow in a stratified fluid 
For our final example, we consider a field of fluid mechanics outside boundary- 

layer theory, namely hydrodynamic instability. For plane parallel flows with 
antisymmetric velocity profiles it is often assumed that the phase velocity of 
each normal mode is zero. Justification of this assumption depends upon unique- 
ness of the mode as well as antisymmetry (cf. Drazin 1958, p. 220; Tatsumi & 
Gotoh 1960, p. 440), and uniqueness is seldom easy to prove. The velocity of a 
mode is often zero for some range of a parameter, but the mode may split into 
two modes with equal and opposite phase velocities as the parameter increases 
beyond this range; plane Couette flow offers a classic example of this, the modes 
bifurcating as the Reynolds number increases. Numerical work is simplified by 
the assumption that the phase velocity is zero, so analysis of the bifurcation of 
a mode may be very useful, showing where and how the phase velocity ceases to 
be zero. 

These remarks apply to many problems of linear instability, but are well 
illustrated by a problem recentlysolved by Huppert (1973). Following Hlailand & 
Riis (1968), he showed how the instability of a certain plane parallel flow of 
incompressible inviscid stratified fluid may be reduced to the following eigenvalue 
problem : dZ$/dy2 + {J@(y - c)p2 - a'} $ = 0, (48) 

$ = O  at y = ~ f : n .  (49) 

One seeks to fmd the complex eigenvalue c and eigenfmction q5 in terms of any 
given real wavenumber a and positive Richardson number J .  Hoiland & Riis 
(1968) noted two classes of eigensolutions with 

c = co E 0, qi = qio = sinmy, a2 = a& 3 J-m2, 
c = co = 0, #J = $o = cos(n-&)y, a' = a: ZE J -  ( n- iH2, 

(50) 
(51) 
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for positive integers m < J*, n < Q + J*. Huppert proceeded to perturb the eigen- 
values of these solutions, finding that 

6 J m  
Cin (Zmn) Si (2mn) - - Si (2mn) 

7T 

for fixed J ,  where the sine and cosine integrals are respectively defined by 

at. 
sin t 

We perturb the solution (51) as follows, trying 

} 
$ = $0 + (a2- a;) $1 + (a2- af)2 $2 + . . . , 
c = co+(a2-a;)cl+ .... (54) 

Equating coefficients of a2 - a:, we get 

(55) i J f $ l  = d2$l/dY2 + {JY2/(Y - c0l2 - 4 1  $1 

= (1 - 2 ~ 1  Jy2/(y - ~ ~ ) ~ l  $0, 

$1 = 0 at y =  .tn. 
Therefore 

Therefore 

(57) 
if the path of the singular integral is taken round the origin on the usual basis. 
This basis is justified by Howard (1963)) and indeed our treatment is essentially 
equivalent to Huppert's calculation of dclda2 by Howard's method. However, 
solution (50) cannot be perturbed in this way, because it gives 0 = n when sub- 
stituted into (56). Thus expansion (54) is not valid for solution (50) when n is 
replaced by rn. 

= - @ J-1, 

Instead we try 
$ = $o+(a"ak)*$*+(a2- 

(58) c = co + (a2 - a&)* c* + (a2 - a;) am) c1 + + . . . . "'1 
This gives M$s = - ~ J c ~ T J ~ $ ~ ( ? J - - c ~ ) - ~ ,  

i.e. 

and 
Therefore 

d244 2c3 J sin my 
- + m2$* = - 
dY Y 

$ 4 =  0 at y =  f 7 T .  

$4 = - 2c4 JJYy) ,  
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where it can be shown by variation of parameters and 8 little calculus that 
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P = (2m)-1 (sin my Si ( 2 m y )  - cos my Cin ( 2 m y )  + cos my Cin (2m7r)). ( 6 2 )  

We could add to F any multiple of q50 = sin my, but this would merely be equiva- 
lent to renormalization of the solution 4 of the linear problem. So we may choose 
F as above without loss of generality, this choice having the convenience of 
giving P as an even function of y, 

The first-order problem is that 

q51= 0 a t  y =  +n-. J 
The solubility condition for (s, now gives 

Therefore 

so 

(66) 

It can easily be shown that this asymptotic result is the same as Huppert’s result 
( 5 2 )  if and only if two integrals are identical, the integrals arising from the 
coefficients of J 2 .  We are grateful to D-r Susan Brown for proving the integral 
identity, by use of multiple integrals and change of variables. Taking an example, 
we found numerically that the resuhs give c9 = 0.113943 for J = 6 and m = 2.  
This compares well with direct integration of (48)’ because computation of the 
eigenvalue for J = 6 gives c = 0.013892i when a = 1-42 and c = 0.005288i when 
a = 1.415. Fitting these two results to a quadratic of the form 

c = c1 (a2 - a%)$ Jr c1(a2 - at1), 
we find that C+ = 0.11423 and c1 = - 0.044%. 

The advantage of our method lies in both its relative simplicity and generality. 
It does not depend upon the luck of being able to solve the Taylor-Goldstein 
equation (48) in terms of confluent hypergeometric or other known functions 
but merely upon being able to invert the simple differential operator Af associated 
with the solution to be perturbed. The method further shows clearly why an 
expansion in powers of (a2 - a%)& rather than a2 - ak is necessary. 

Finally note that we require ct2 > a% to validate our expansion, because 
otherwise (66) would give real values of c,  so that the problem would be singular. 
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We have avoided discussion of the deeper topic of the singularity because it is 
not very relevant to this application of a, series in powers of the square-root of 
a2 - a;. 
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